Small-diameter artificial arteries engineered in vitro.
نویسندگان
چکیده
Although the need for a functional arterial replacement is clear, the lower blood flow velocities of small-diameter arteries like the coronary artery have led to the failure of synthetic materials that are successful for large-diameter grafts. Although autologous vessels remain the standard for small diameter grafts, many patients do not have a vessel suitable for use because of vascular disease, amputation, or previous harvest. As a result, tissue engineering has emerged as a promising approach to address the shortcomings of current therapies. Investigators have explored the use of arterial tissue cells or differentiated stem cells combined with various types of natural and synthetic scaffolds to make tubular constructs and subject them to chemical and/or mechanical stimulation in an attempt to develop a functional small-diameter arterial replacement graft with varying degrees of success. Here, we review the progress in all these major facets of the field.
منابع مشابه
Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.
Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation w...
متن کاملCustom Design of the Cardiac Microenvironment With Biomaterials Heart Valve Tissue Engineering Engineering Myocardial Tissue Small-Diameter Artificial Arteries Engineered In Vitro Regenerative Cardiomyocytes for Cardiovascular Tissue Engineering
Although the need for a functional arterial replacement is clear, the lower blood flow velocities of small-diameter arteries like the coronary artery have led to the failure of synthetic materials that are successful for large-diameter grafts. Although autologous vessels remain the standard for small diameter grafts, many patients do not have a vessel suitable for use because of vascular diseas...
متن کاملDevelopment and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells
BACKGROUND Tissue engineering has emerged as a promising alternative for small-diameter vascular grafts. The aim of this study was to determine the feasibility of using decellularized aortae of fetal pigs (DAFPs) to construct tissue-engineered, small-diameter vascular grafts and to test the performance and application of DAFPs as vascular tissue-engineered scaffolds in the canine arterial syste...
متن کاملTissue Engineered Small Vessel Conduits – The Anti-Thrombotic Effect of Re-Endothelialization of Decellularized Baboon Arteries: A Preliminary Experimental Study
BACKGROUND The use of decellularized biological scaffolds for the reconstruction of small-diameter vascular grafts remains a challenge in tissue engineering. Thrombogenicity is an important cause of obstruction in these vessels due to decellularization. Seeding of the decellularized vascular constructs with endothelial cells is therefore a prerequisite for the prevention of thrombosis. The aim ...
متن کاملMorphologic and mechanical characteristics of engineered bovine arteries.
OBJECTIVE The ideal small-caliber arterial graft remains elusive despite several decades of intense research. A novel approach to the development of small-caliber arterial prostheses with a biomimetic system for in vitro vessel culture has recently been described. In this study we examined the effects of culture time and tissue culture scaffolding on engineered vessel morphology and function an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 1 شماره
صفحات -
تاریخ انتشار 2006